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Abstract

The well-known Stormer-Cowell class of linear k-step methods
for the solution of second order initial value problems suffer
from orbital instability. The solution of a problem describing a
uniform motion in a c¢ircular orbit, spirals inward. Several
modifications were suggested, some require the a-priori knowledge
of the frequency. Here we develop a method based on the conser-
This method overcomes the

vation of energy and momentum.

aforementioned difficulty.
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1. Introduction

In this paper we develop a method for the numerical solution
of the equations of motion of an object acted upon by several
gravitational masses. In general, the motion can be described by

a special class of second order differential equations, namely
y"(x) = f(x,y(x)) . (1)
There exist methods of Runge-Kutta type which tackle this

problem directly (Collatz [8, p. 61], de Vogelaere [23]), Scraton

(20] and others). Also, linear multistep methods of the form

I e

0j¥n+j = h? 85 fn+3 (2)

31=0 3

exist. See, for example, Henrici [11, p. 289)], Lambert [13, p.
252] and others. One of the authors has developed hybrid methods
for such classes (Neta and Lee [15], Neta (16, 18}).

The direct application of methods of class (2) to problem
(1), rather than the application of a conventional 1linear
multistep method to an equivalent first-order system is usually
recommended (Ash [1]).

Special methods based on a-priori knowledge of the frequency
were developed by Bettis [3], Steifel and Bettis [{22], Gautschi
{10], Neta and Ford ([17), Neta [19], van der Houwen and Sommeijer

[12]}, Lyche {14] and Sommeijer et al [21].
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To avoid the use of the frequency other methnds were
developed satisfying the so-called P-stability. This idea of P-
stability was introduced by Lambert and Watson [13]. They showed
that such metheds are necessarily implicit and cannot have order
greater than two. Chawla [5) and Cash [4] independently showed
that this order-barrier can be crossed over by considering hybrid
two-step methods. Other P-stable methods were developed by
Costabile & Costabile (9], Chawla (6], Chawla and Rao [7] and
others.

Our idea here is to develocp a new method to approximate the
solution of the two body problem. This scheme will conserve both
the energy per unit mass and the specific angular momentum of the
system.

In the next section the method is developed for the
perturbation free flight. Numerical experiments with the scheme

will be described in the last section.




2. Development of the Method
In this section we describe our new scheme to solve the

following system of equations

2

c‘i’_;; =T T2 }2< 372 * (3)

dt (x“+y7)

a’y K (4)
= - y ‘

dt2 (x2+yz)3/2

where k = 3.9877 1014 n3 sec™2 is the gravitational parameter.

It is well known that Cowell's method gives a numerical
solution that spirals inward. Encke's method improves this
result but requires more work [2].

It can be easily shown (see e.g., Bate et al. [2]) that the
energy and momentum are conserved for a perturbation free flight.
The conservation of these quantities will be used to oktain the

fast changing variable. It is thus important to rewrite the

system in polar coordinates

a’r = (852 _ Xk (5)
2 2
dt dt r
2
d6 _ _2drdsd (6)
dt2 r dt dt

The radius r does not change much in time and thus we can use any

method; here we use a second order Taylor series method. The



value of & corresponding to r will be obtained by integrating the

relation (conservation of energy per unit mass)

dr.2 de,2 _ dr ds
(S5y° + (r 32 = (ﬁlt=) + (r(0)

2 as 2
dt 0 t=0

) . (7)

To be more specific, our method approximates r using

r(tj,) = r(ti) + r(ti) (it) + %;(ti)(At)z (8)
where
F(tij+1) = r(ty) + E(i)(at) (9)
and ;(t) is obtained from the differential equation. In a

similar fashion we find

. - A : . 1, cey 2

Sltip) = S(E)) + os(e) (L) + 35(t ) (2t) (10)
where

se) = Ve + k/ren? - e /e (11)

and €(t;) is obtained by differentiating the above relation.
The results of this method were compared to Taylor series
method for both r and 5 where now é is evaluated from an equation

similar to (9).




Remark: It should be clear that this idea can be used for any

conservative system. One uses the conservation of some quantity

to obtain an approximate value for the faster changing component.




3. Numerical Experiments

In this section we solve the equations of motion (3)-~(4)

combined with the initial values

where R

r(0) = R + 10° ,

r¢qo) = 0, (12)
£(0) = 0,

i(0) = 8000/r(0) ,

6.37110% is the radius of earth.

In the first table we compare the results of our method with

Taylor series using t = 1 sec. As can be seen in the table, the

value of r at the end of each period is nearly constant with our

method but decreases as the number of periods increases with

Taylor series method.

At the

end of

Period
0
5
10
15
20
30
40
50
60
70

TABLE 1
7 Energy per Specific angulat
r (10 m) unit mass momentum
Taylor New (108 mz/secz) (10ll mz/sec)
.6471 .6471 -.2962 .5277
.6320 .6476 . -.3019% .5127
.6173 .6482 -.3077 .5078
.6030 .6487 -.3135 .5029
.5890 .6493 -.3194 .4982
.5622 .6503 -.3313 .4888
.5367 .6513 -.3433 .4798
.5123 .6523 -.3557 .4710
.4891 .6533 -.3683 .4624
.4667 .6543 -.3811 .4540
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The energy per unit mass E and the specific angular momentum are
given by

2

1 K
E = 7(1’ T

+ (re)?) -

’

(13)
P = rzé - ;6 .
In our example both the energy and momentum are conserved.

In the following three figures the radius r, the energy per
unit mass E and the specific angular momentum P were plotted at
the end of every 10 periods. It is clear that the relative
change in r values after 70 periods using Taylor series method is
more than 25 times larger compared to our new method. The energy
and momentum were kept constant by the new sc:eme whereas the
Taylor series method shows a relative loss of 28% in energy and
12% in momentum at the end of 70 periods.

Remark: Note that our method is explicit whereas the P-stable

methods suggested by Lambert and Watson [13] are implicit.
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